Homework 1, due 9/2

1. For each $p, q>0$ real, and g, determine the radius and the center of the circle with equation $p z \bar{z}+g z+\overline{g z}=q$.
2. For each $c \in D(0,1)$ define the transformation L_{c} by

$$
L_{c}(z)=\frac{z-c}{1-\bar{c} z}
$$

Prove that L_{c} maps the unit disk $D(0,1)$ onto the unit disk, and the unit circle $S^{1}=\{z:|z|=1\}$ onto the unit circle.
3. Prove that if $f: \mathbf{C} \rightarrow \mathbf{C}$ satisfies the Cauchy-Riemann equations at z, then $g: \mathbf{C} \rightarrow \mathbf{C}$ defined by $g(w)=\overline{f(\bar{w})}$ satisfies that Cauchy-Riemann equations at $w=\bar{z}$.
4. If $f: \Omega \rightarrow \mathbf{C}$ is holomorphic on a connected open set $\Omega \subset \mathbf{C}$, prove the following:
(i) If $f^{\prime}(z)=0$ for all $z \in \Omega$, then f is constant.
(ii) If there exists $c \in \mathbf{C}$ such that $f(z)=c \cdot \overline{f(z)}$ for every $z \in \Omega$, then f is constant.
(iii) If $f(\Omega) \subset \mathbf{R}$, then f is constant.
5. The dilogarithm $L i_{2}$ is the series

$$
L i_{2}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}
$$

(i) Determine its radius of convergence R.
(ii) Does the series converge on the closure $\overline{D(0, R)}$?

